Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Visualization literacy is an essential skill for accurately interpreting data to inform critical decisions. Consequently, it is vital to understand the evolution of this ability and devise targeted interventions to enhance it, requiring concise and repeatable assessments of visualization literacy for individuals. However, current assessments, such as the Visualization Literacy Assessment Test ( vlat ), are time-consuming due to their fixed, lengthy format. To address this limitation, we develop two streamlined computerized adaptive tests ( cats ) for visualization literacy, a-vlat and a-calvi , which measure the same set of skills as their original versions in half the number of questions. Specifically, we (1) employ item response theory (IRT) and non-psychometric constraints to construct adaptive versions of the assessments, (2) finalize the configurations of adaptation through simulation, (3) refine the composition of test items of a-calvi via a qualitative study, and (4) demonstrate the test-retest reliability (ICC: 0.98 and 0.98) and convergent validity (correlation: 0.81 and 0.66) of both CATS via four online studies. We discuss practical recommendations for using our CATS and opportunities for further customization to leverage the full potential of adaptive assessments. All supplemental materials are available at https://osf.io/a6258/ .more » « less
-
reVISit is an open-source software toolkit and framework for creating, deploying, and monitoring empirical visualization studies. Running a quality empirical study in visualization can be demanding and resource-intensive, requiring substantial time, cost, and technical expertise from the research team. These challenges are amplified as research norms trend towards more complex and rigorous study methodologies, alongside a growing need to evaluate more complex interactive visualizations. reVISit aims to ameliorate these challenges by introducing a domain-specific language for study set-up, and a series of software components, such as UI elements, behavior provenance, and an experiment monitoring and management interface. Together with interactive or static stimuli provided by the experimenter, these are compiled to a ready-to-deploy web-based experiment. We demonstrate reVISit's functionality by re-implementing two studies --- a graphical perception task and a more complex, interactive study. reVISit is an open-source community project, available at https://revisit.dev/.more » « less
-
Graphical perception studies typically measure visualization encoding effectiveness using the error of an “average observer”, leading to canonical rankings of encodings for numerical attributes: e.g., position > area > angle > volume. Yet different people may vary in their ability to read different visualization types, leading to variance in this ranking across individuals not captured by population-level metrics using “average observer” models. One way we can bridge this gap is by recasting classic visual perception tasks as tools for assessing individual performance, in addition to overall visualization performance. In this article we replicate and extend Cleveland and McGill's graphical comparison experiment using Bayesian multilevel regression, using these models to explore individual differences in visualization skill from multiple perspectives. The results from experiments and modeling indicate that some people show patterns of accuracy that credibly deviate from the canonical rankings of visualization effectiveness. We discuss implications of these findings, such as a need for new ways to communicate visualization effectiveness to designers, how patterns in individuals’ responses may show systematic biases and strategies in visualization judgment, and how recasting classic visual perception tasks as tools for assessing individual performance may offer new ways to quantify aspects of visualization literacy. Experiment data, source code, and analysis scripts are available at the following repository: https://osf.io/8ub7t/?view_only=9be4798797404a4397be3c6fc2a68cc0 .more » « less
An official website of the United States government
